Extreme anisotropy of wave propagation in two-dimensional photonic crystals.

نویسندگان

  • Yaroslav A Urzhumov
  • Gennady Shvets
چکیده

We demonstrate that electromagnetic waves propagating in square and hexagonal photonic crystals can have fundamentally different anisotropy properties. The wave frequency and group velocity can be functions of the propagation direction even for vanishingly small wave numbers (near the gamma-point). This anisotropy, present in square but absent in hexagonal lattices, can be so extreme that the group velocity can be either parallel or antiparallel to the phase velocity depending on the propagation direction. An analytic explanation of this effect based on the k.p perturbation theory and group-theoretical considerations is confirmed by electromagnetic simulations. One manifestation of the extreme anisotropy is the divergent van Hove singularity in the density of photonic states at the gamma-point. New applications, including surface-emitting quantum cascade lasers, are proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation and Comparison of Light Propagation in Two Graded Photonic Crystal Structures

In this paper, we study two different Graded Index (GRIN) photonic crystal (PC) structures which are named as structure type I and type II. The PC structures are made of the square rod in an air background. To design a GRIN PC structure the lattice constant has been altered in the direction transverse to propagation. We investigated focusing effect             and waveguiding behavior of electr...

متن کامل

A New Method for Calculating Propagation Modes of a One Dimensional Photonic Crystal (RESEARCH NOTE)

Photonic band-gap (PBG) crystals offer new dimensions of freedom in controlling propagation of electromagnetic waves. The existence of stop-bands in the transmission characteristic of these crystals makes them a suitable element for the realization of many useful microwave and optical subsystems. In this paper, we calculate the propagation constant of a one-dimensional (1-D) photonic crystal by...

متن کامل

Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals

In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...

متن کامل

A Novel Structure for Optical Channel Drop Filter using Two-Dimensional Photonic Crystals with Square Lattice

In the present paper a novel structure for optical channel drop filter (CDF) based on photonic crystal ring resonator with circular core has been proposed. In order to design the proposed CDF, the plan wave expansion (PWE) method is applied for calculation of band structure and photonic band gap while the transmission characteristics of proposed CDF have been calculated using the finite differe...

متن کامل

Design and Simulation 4-Channel Demultiplexer Based on Photonic Crystals Ring Resonators

In this paper, a new design of demultiplexer based on two-dimensional photonic crystal ringresonator is proposed. The structure is made of a hexagonal lattice of silicon rods with therefractive index 3.46 in coefficient of air with refractive index 1. The transmission efficiencyand Quality factor for our proposed demultiplexer, respectively, are more than 65% and1600. The normalized transmissio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 72 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005